Auto >> машина >  >> Уход за автомобилем
  1. Авто ремонт
  2. Уход за автомобилем
  3. Двигатель
  4. Электромобиль
  5. Автопилот
  6. Автомобиль Фото

4 типа системы зажигания и принцип их работы

Несмотря на то, что автомобильная промышленность на протяжении всей своей истории достигла значительного механического и технологического прогресса, есть один общий компонент, который есть у всех автомобилей с двигателями внутреннего сгорания:система зажигания. Если вы серьезно относитесь к своему драгоценному автомобилю, зная, как различные типы систем зажигания работу, их преимущества и недостатки, полезно при выборе правильной свечи зажигания, которая работает наиболее эффективно с учетом требований к производительности системы зажигания.

Хотя почти каждый основной компонент автомобиля с годами претерпел усовершенствования, основные принципы работы системы зажигания не изменились почти столетие. По сути, он берет электрическое напряжение от аккумулятора, преобразует его в гораздо более высокое напряжение, затем передает этот электрический ток в камеру сгорания двигателя и воспламеняет сжатую смесь топлива и воздуха для создания сгорания. Это сгорание вырабатывает энергию, необходимую для движения вашего автомобиля.

Тем не менее, метод, с помощью которого создается и распространяется искра, значительно улучшился благодаря технологическим достижениям. В настоящее время существует четыре типа систем зажигания, используемых в большинстве легковых и грузовых автомобилей, в соответствии с порядком изобретения:обычное зажигание с точкой прерывания (механическое), зажигание с высокой энергией (электронное), зажигание без распределителя (отработанная искра) и зажигание с катушкой. свечи зажигания. Зажигание с точкой прерывания (механическое) и зажигание с высокой энергией (электронное) - это зажигание на основе распределителя, поэтому еще один способ классификации - это три более широких типа системы зажигания:системы зажигания на основе распределителя, без распределителя и катушки на свече.

В этом подробном руководстве мы подробно рассмотрим, как работает каждая система, а также вытекающие преимущества и недостатки каждой из них, а также то, как это влияет на производительность вашего двигателя и требования к техническому обслуживанию.

Что делает система зажигания?

Когда вы вставляете ключ в замок зажигания автомобиля и поворачиваете его, двигатель запускается и продолжает работать. Вы когда-нибудь задумывались обо всем процессе, который происходит за таким простым действием?

Вернемся к двигателю 101:ваш двигатель вырабатывает энергию для движения вашего автомобиля, создавая сгорание или взрыв внутри камеры сгорания, отсюда и название «двигатель внутреннего сгорания». Для создания такого сгорания важную роль играет система зажигания:ваши свечи зажигания обеспечивают электрическую искру, которая воспламеняет смесь воздуха и топлива, подаваемую в камеру сгорания.

Чтобы система зажигания работала должным образом, она должна одновременно эффективно и точно выполнять две задачи.

Создать достаточно сильную и горячую искру

Первая задача — создать сильную искру, которая может перепрыгнуть через зазор свечи зажигания. Другими словами, системе зажигания необходимо повысить напряжение аккумуляторной батареи с 12 вольт до не менее 20 000 вольт, что необходимо для воспламенения смеси сжатого воздуха и топлива в камере сгорания для создания энергогенерирующего взрыва.

Чтобы добиться такого огромного скачка напряжения, в системах зажигания всех автомобилей, кроме моделей с дизельным двигателем, используется катушка зажигания, состоящая из двух катушек провода, намотанных на железный сердечник, известных как первичная обмотка и вторичная обмотка. Катушка зажигания действует как силовой трансформатор.

Цель катушки зажигания состоит в том, чтобы создать электромагнит, пропуская 12 вольт, подаваемых аккумулятором, через первичную обмотку. Когда пусковой выключатель системы зажигания автомобиля отключает питание катушки зажигания, магнитное поле разрушается. При этом вторичная обмотка улавливает разрушающееся магнитное поле первичной обмотки и преобразует его в напряжение от 15 000 до 25 000 вольт.

Затем он подает это напряжение на свечу зажигания, тем самым создавая сгорание в камере сгорания двигателя, тем самым создавая энергию для запуска и работы двигателя вашего автомобиля. Чтобы возникла необходимая искра, преобразованное напряжение, подаваемое на свечу зажигания, должно находиться в диапазоне от 20 000 до 50 000 вольт.

ПОДРОБНЕЕ

  • Типы свечей зажигания и их функции

Зажгите искру в нужное время

В то же время другая важная роль системы зажигания заключается в обеспечении того, чтобы искра воспламенялась именно в нужный момент во время такта сжатия, чтобы максимизировать мощность, генерируемую воспламененной воздушно-топливной смесью. Другими словами, достаточное напряжение должно подаваться на правильный цилиндр в точное время, и это нужно делать часто.

Все компоненты работают точно и гармонично, чтобы ваш двигатель достиг оптимальной производительности. Даже малейшая ошибка синхронизации в какой-либо отдельной детали приведет к проблемам с работой двигателя, а если она продолжится, то может даже привести к необратимому повреждению.

Система зажигания должна обеспечивать достаточную искру в правом цилиндре. Чтобы обеспечить точную синхронизацию зажигания, инженеры использовали несколько методов, которые развивались с годами.

В ранних системах зажигания использовались полностью механические распределители для управления моментом зажигания, за которыми последовали гибридные распределители, оснащенные полупроводниковыми переключателями и модулем управления двигателем (ECM), по сути, типом простого компьютера для распределения электроэнергии на каждый отдельный цилиндр. .

После этого недостаткам этих первых распределителей удалось противостоять 100-процентным электронным системам зажигания, первой из которых была система зажигания без распределителя, в которой распределитель был полностью исключен.

Последнее изобретение, системы зажигания с катушкой на свече, позволило значительно улучшить момент зажигания за счет использования усовершенствованных катушек зажигания, которые обеспечивают гораздо больший удар и генерируют гораздо более горячую искру.

Что делает каждый компонент системы зажигания

Батарея

Когда двигатель работает, он также запускает генератор, который вырабатывает электричество для подзарядки аккумуляторной батареи. Аккумулятор в вашем автомобиле накапливает электричество и рассеивает его в виде постоянного тока.

Батарея обеспечивает двенадцать вольт постоянного тока. Однако, чтобы получить искру для воспламенения, на свече зажигания должно быть от 20 000 до 50 000 вольт. Чтобы обеспечить такое значительное увеличение напряжения, вам нужна катушка зажигания.

Катушка зажигания

Катушка зажигания действует как силовой трансформатор. Самые ранние механические системы зажигания полагаются на одну катушку для преобразования низкого напряжения от батареи в высокое напряжение, необходимое для свечей зажигания.

Электрическое преобразование катушки зажигания работает по принципу магнитной индукции. В традиционном трансформаторе первичная катушка получает питание, то есть постоянный ток от батарей. Однако этот заряд через первичную катушку периодически прерывается. Это нарушение вызвано распределителем в ранних системах зажигания на основе распределителя и компьютером для достижения более точной синхронизации в более поздних системах зажигания. Работа дистрибьютора будет рассмотрена ниже.

Напряжение в первичной обмотке создает магнитное поле. Периодическое нарушение тока, который получает первичная катушка, приводит к тому, что магнитное поле, создаваемое первичной катушкой, постоянно разрушается. Такие большие движения магнитного поля первичной катушки заставляют вторичную катушку создавать один всплеск энергии высокого напряжения за раз.

Насколько велико напряжение, создаваемое вторичной катушкой, зависит от отношения числа витков в первичной катушке к числу витков во вторичной катушке. Если вторичная катушка имеет в два раза больше витков, чем первичная, выходное напряжение будет в два раза больше входного напряжения. Таким образом, для повышения напряжения с 12 вольт хотя бы до 20 000 вольт, которое необходимо свечам зажигания, в катушке зажигания автомобиля вторичная катушка имеет в десятки тысяч раз больше витков, чем первичная.

Дистрибьютор

Вот как распределитель создает вышеупомянутые периодические дискретные заряды, подаваемые на первичную катушку зажигания. Распределитель содержит «точку прерывания», которая заземляет цепь первичной обмотки. Эта точка соединена с землей рычагом. Рычаг приводится в движение кулачком, соединенным с валом распределителя. Это размыкает цепь первичной обмотки и вызывает коллапс, вызывающий всплески высокого напряжения во вторичной обмотке.

Кроме того, в то время как батарея и катушка зажигания обеспечивают питание, распределитель выполняет важную работу, точно определяя, где и когда это питание поступает на каждую свечу зажигания.

Распределитель содержит множество деталей, важнейшие из которых включают ротор, который вращается в такт двигателю, и ряд «контактов», закрепленных на крышке распределителя. Электрический ток от катушки зажигания подается на ротор. Ротор вращается, и когда конец ротора приближается к одному из контактов, на этот контакт подается электрическая дуга. Оттуда мощность передается по проводу свечи зажигания к соответствующей свече зажигания, таким образом синхронизируя заряд каждой свечи зажигания.

Свечи зажигания и их провода 

Провода свечей зажигания, также называемые проводами зажигания, представляют собой изолированные провода, передающие питание на свечи зажигания, чтобы свечи зажигания наконец могли создать искру, вызывающую воспламенение.

Свеча зажигания состоит из изолированного керамического корпуса с центральным проводящим металлическим сердечником в центре. Между этим металлическим центральным сердечником и кончиком электрода, который заземляется на металлическом основании свечи зажигания, есть зазор. Электричество образует дугу или перескакивает через эту щель, вызывая искру.

Насколько важна система зажигания

Вывод заключается в том, что без правильной и точной работы системы зажигания у вашего автомобиля могут возникнуть проблемы с запуском или он может вообще не завестись.

Изношенные свечи зажигания и неисправные компоненты системы зажигания повлияют на производительность вашего двигателя, создавая широкий спектр проблем с двигателем, включая затрудненный запуск, пропуски зажигания, недостаточную мощность, плохую экономию топлива и даже необратимые повреждения, если проблемы не будут устранены вовремя. Также обратите внимание, что эти проблемы с двигателем, вызванные неисправными системами зажигания, могут повредить другие важные компоненты вашего автомобиля.

Поэтому регулярное техническое обслуживание вашей системы зажигания необходимо для обеспечения оптимальной работы вашего двигателя и, следовательно, плавного и безопасного вождения. Тогда насколько регулярного достаточно? Не реже одного раза в год вы должны проводить визуальный осмотр компонентов вашей системы зажигания, чтобы проверить наличие признаков износа или неисправности, а затем, при необходимости, сразу же заменить их.

Что касается свечей зажигания, обязательно проверяйте и заменяйте их с периодичностью, рекомендованной производителем вашего автомобиля. Опять же, учитывая важность системы зажигания, профилактическое обслуживание является ключом к увеличению производительности и срока службы вашего двигателя.

ПОДРОБНЕЕ

  • Стоит ли заменять сразу все катушки зажигания?
  • Как часто менять свечи зажигания?

4 типа системы зажигания:№1 зажигание от точки прерывания на основе дистрибьютора (механическая)

История

Самым старым типом системы зажигания является обычная система зажигания с точкой прерывания, которую иногда также называют механической системой зажигания. Он использовался с первых дней автомобильной промышленности, особенно в 1970-х годах.

Это один из двух типов систем зажигания, в которых используется распределитель, так называемые системы на основе распределителя. В отличие от трех других типов систем зажигания, описанных ниже, система зажигания с точкой прерывания является полностью механической по своей природе, отсюда и ее второе название.

Давайте узнаем, как они работают, а затем на основании этого посмотрим на итоговые плюсы и минусы этого типа системы зажигания. В этом разделе мы углубимся в детали, так как механическая система точки останова является самым ранним изобретением и, следовательно, является основой для всех более поздних моделей. Вы должны четко понимать, как работает эта система, чтобы видеть плюсы и минусы более поздних улучшенных систем.

Краткое описание Ignition на основе дистрибьютора

Первые два типа системы зажигания, система точки прерывания и электронная система, основаны на распределителе, в отличие от двух других систем без распределителя. Итак, давайте изучим основы работы системы на основе дистрибьютора.

Распределитель представляет собой закрытый вращающийся вал с механически синхронизированным зажиганием. Основная задача распределителя состоит в том, чтобы направить вторичный или высоковольтный ток от катушки зажигания к свечам зажигания в правильном порядке зажигания и в течение нужного периода времени.

В полностью механическом распределителе распределитель соединяется с распределительным валом с помощью шестерен и приводится во вращение распределительным валом. Внутри многогранный кулачок на валу распределителя перемещает другие части распределителя, по существу действуя как механический переключатель, который запускает и останавливает подачу энергии на катушку зажигания.

Как только катушка генерирует достаточное напряжение, оно перемещается в верхнюю часть катушки и в верхнюю часть крышки распределителя. Там вращающийся диск, прикрепленный к валу распределителя, распределяет электрический ток по каждому из проводов свечи зажигания по порядку. Ток проходит по проводам свечи зажигания к свечам зажигания и вызывает воспламенение.

Как работает зажигание в точке останова

Система зажигания с точкой прерывания на основе распределителя имеет две электрические цепи:первичную и вторичную.

Катушка зажигания состоит из двух витков проволоки, намотанной на железный сердечник, известной как первичная обмотка или первичная катушка, и вторичной обмотки, или вторичной катушки. Первичная цепь состоит из первичной обмотки, «точки прерывания» и автомобильных аккумуляторов. Он работает только от слабого тока аккумуляторной батареи и управляется точками прерывателя и выключателем зажигания.

Между тем, вторичная цепь состоит из вторичных обмоток в катушке, высоковольтного провода катушки на внешних распределителях катушки, свечей зажигания, выводов свечей зажигания, ротора распределителя и крышки распределителя.

При включении зажигания на первичную катушку поступает низковольтный постоянный ток от аккумуляторов, который проходит через точки прерывателя распределителя обратно к аккумулятору. Этот поток тока формирует магнитное поле вокруг катушки зажигания.

Теперь вот как вступает в игру «точка разлома».

Как упоминалось выше, распределитель содержит «точку прерывания», которая заземляет цепь первичной обмотки. Эта точка прерывания соединена с землей рычагом, который приводится в движение кулачком, соединенным с валом распределителя.

Благодаря ротору распределителя, который вращается синхронно с двигателем, при вращении двигателя кулачок вала распределителя поворачивается до тех пор, пока верхняя точка кулачка не приведет к разделению точек прерывателя. Мгновенно это внезапное разделение останавливает ток через первичную катушку.

Это приводит к тому, что магнитное поле, создаваемое первичной катушкой, коллапсирует вокруг катушки. Конденсатор поглощает энергию и предотвращает возникновение электрической дуги между точками прерывателя каждый раз, когда они размыкаются. Другими словами, конденсатор играет роль в быстром схлопывании магнитного поля, которое необходимо для создания высокого напряжения во вторичной обмотке.

Такие внезапные и непрерывные изменения магнитного поля первичной катушки прорезают вторичную катушку, создавая скачок высокого напряжения, который достаточно высок, чтобы перепрыгнуть зазоры между ротором и клеммами крышки распределителя, а также зазоры между электродами свечи зажигания. . Предполагая, что вся система правильно синхронизирована, искра достигает воздушно-топливной смеси в указанном цилиндре в точный момент, и в этом цилиндре происходит сгорание.

Поскольку распределитель продолжает вращаться в такт двигателю, электрические контакты между ротором и выводом крышки распределителя прерываются, прекращая подачу тока на вторичную обмотку. В то же время точки прерывателя снова замыкаются, замыкая первичную цепь, позволяя току снова течь через первичную катушку.

Этот ток снова создаст магнитное поле вокруг первичной катушки, которая снова схлопнется, и цикл повторится для следующего цилиндра в порядке зажигания. Следует отметить, что в системах с точкой прерывания и более поздних электронных системах одна катушка, состоящая из первичной и вторичной обмотки, питает все цилиндры.

Весь этот процесс «магнитной индукции» происходит примерно 18 000 раз в минуту при скорости 90 миль в час.

Сводка по воспламенению точки останова: 

Плюсы

  • Простота обслуживания: Механическая природа этих систем зажигания, а также тот факт, что эти системы существуют дольше всех, делают их относительно простыми для диагностики и ремонта.

Минусы

  • Возможна поломка: Однако они состоят из большого количества механически движущихся частей, что также увеличивает вероятность износа, неисправностей и поломок.
  • Влияет на производительность двигателя: Такой вероятный износ этих типов систем зажигания может со временем снизить максимальную энергию искры, вызывая частые проблемы с двигателем, такие как пропуски зажигания и увеличение выбросов.

4 типа системы зажигания:электронное зажигание №2 от дистрибьютора

История

После того, как полностью механические системы зажигания с точкой прерывания существовали более 70 лет, автомобильная промышленность столкнулась с потребностью в увеличении пробега, большей надежности и снижении выбросов. Производители придумали высокоэнергетическую систему зажигания, которая меньше полагалась на механическую работу:электронную систему зажигания.

Точки прерывания в более ранних системах выходили из строя и нарушали синхронизацию зажигания, что негативно влияло на производительность двигателя и требовало замены каждые 12 000 миль.

Чтобы устранить этот недостаток, более поздняя электронная система зажигания все еще имеет распределитель, но точки прерывания и конденсатор были заменены катушкой датчика, которая действует как транзисторный переключатель, и электронным модулем управления, который управляет катушкой зажигания для создания высокого напряжения. - ток напряжения.

По сравнению с более ранней системой зажигания с точкой прерывания использование такого электронного переключателя для контролируемого времени означает меньшее количество движущихся частей, что делает эти электронные системы зажигания относительно простыми для диагностики и ремонта. Они также устраняют недостаток системы точки срабатывания, создавая стабильную высоковольтную искру на протяжении всего срока службы двигателя, что означает меньшее количество пропусков зажигания и приемлемый уровень выбросов.

В этих электронных системах по-прежнему используется обычная крышка распределителя и ротор распределителя для выполнения той же работы по распределению тока на свечи зажигания (таким образом, они также являются системами зажигания на основе распределителя).

Несмотря на меньшее количество движущихся частей, распределитель также подвержен износу и в конечном итоге потребует замены, что побудило к дальнейшим улучшениям в более поздних системах зажигания в этом отношении. Еще одним недостатком электронных систем зажигания является то, что угол опережения зажигания еще не регулируется точно в соответствии с пожеланиями производителей, что приводит к медленному ускорению и низкой топливной экономичности.

Как работает электронное зажигание

Как и ранние системы зажигания с точкой прерывания, электронные системы имеют две катушки зажигания и, соответственно, две цепи:первичную цепь и вторичную цепь. Часть первичной цепи от аккумулятора до клеммы аккумулятора на первичной обмотке остается неизменной, как и вся вторичная цепь.

Когда ключ зажигания включен, низковольтный ток батареи проходит от батареи через ключ зажигания к первичной обмотке. Вместо точек прерывания в более ранних системах ток прерывается и снова включается непрерывно с помощью компонента, называемого якорем, который имеет много «зубцов», поскольку он вращается вокруг катушки датчика, которая действует как датчик.

Когда каждый зубец якоря приближается к приемной катушке, он создает напряжение, которое сигнализирует электронному модулю отключить ток через первичную катушку. In essence, this mechanism is quite similar to that in breaker-point systems.

When the current is disrupted, the magnetic field around the primary coil collapses, creating a high voltage spurt in the secondary coil. The electric current now operates on the secondary circuit, which is the same as in a breaker-point system. A timing circuit in the electronic module will turn the current on again after the primary coil’s magnetic field has collapsed, and the whole process repeats for each cylinder in the firing sequence.

Electronic Ignition Summary

Pros:

  • Less likely to break down: The breaker points and condenser are removed, thus electronic systems have fewer mechanical moving parts, thus are less likely to break down.
  • Reliable :Unlike breaker-point ignition systems, electronic systems can generate consistent, high voltage spark throughout the life of the engine, meaning fewer engine misfires and reasonable emissions.

Cons:

  • Maintenance :Still, the distributor remains, which is subject to wear and tear and will require replacement, adding to repair costs.
  • Timing:Spark timing is exactly precise, resulting in sluggish acceleration and poor fuel economy.

4 Types Of Ignition System:#3 Distributor-less Ignition 

History

A shortcoming of the electronic ignition systems is that they still have the distributor, which is subject to wear and tear. In addition, the distributor tends to accumulate moisture and cause difficult starting problems. The distributor also requires engine power to spin, as it gets spun in time with the engine, thus no distributor means less engine drag and increased efficiency.

Manufacturers came up with a solution:to remove the fully mechanical distributor and replace it with solid-state switches that don’t wear out.

Doing so increased reliability, but the solid-state switches still took their marching orders from the distributor shaft, which was still mechanically rotated by the camshaft. And distributor shafts are subject to wear and tear, and would tend to develop problems after some 120,000 miles.

Any wear and tear always impedes proper spark timing, thus beginning in the early ’80s, manufacturers removed the mechanical distributor altogether to introduce the distributor-less ignition system. These systems are very different from breaker-point and electronic ignition systems, The ignition coils now sit directly on top of the spark plugs, spark plug wires are eliminated, and the system is fully electronic.

ПОДРОБНЕЕ

  • Top 5 Reasons Behind No Spark From Distributor
  • Bad Distributor Cap Symptoms:Things To Look For

How Distributor-less Ignition Works

The third types of ignition system is the distributor-less, also called waste spark ignition system. Instead of a conventional trouble-breeding distributor, this system uses multiple ignition coils:one coil per cylinder or one for each pair of cylinders.

Without the distributor to “distribute” electric current to the spark plugs, the spark plugs are fired directly from the coils. Spark plug timing is controlled by an electronic ignition module and the engine computer.

This system uses engine sensors to determine crankshaft position and camshaft position. These sensors continually monitor the positions of both shafts and deliver that information to the engine computer.

The Crankshaft Position Sensor is mounted at the front of the crankshaft, or near the flywheel on some vehicles, and the Camshaft Position Sensor is mounted near the end of the camshaft.

Based on the two shafts’ position, the electronic ignition module triggers the appropriate ignition coil, which directly fires the associated spark plugs. This system also uses a “waste spark” for one of the paired cylinders, pairing two pistons that will be at the top dead center at the same time: one at the end of its compression stroke, and the other at the end of its exhaust stroke.

Another major difference compared to its predecessor is that while earlier systems uses a single coil, which consists of a primary winding and a secondary winding, to power all the cylinders in a particular order, distributor-less ignition systems employ a different coil setup. It uses multiple ignition coil packs, each generating spark for just two cylinders, which means each coil can be turned on for longer.

Therefore, this soil setup is capable of developing a stronger magnetic field of up to 30,000 volts, as well as stronger, hotter spark required to ignite the typical leaner air-fuel mixtures of more modern vehicles.

Each of the spark plugs in these cylinders will fire at the same time using the high voltage from one coil. This allows for more precise ignition timing, thus higher engine efficiency and lower emissions.

Distributor-less Ignition Summary

Pros:

  • Reliable :Can generate consistent, high voltage throughout the engine’s lifetime.
  • Precise spark timing: Since the distributor, which is subject to wear and tear after certain miles, is removed, spark timing can be precisely controlled, thus allowing for lower emissions.
  • Less likely to break down: thanks to the lack of moving parts, as the system is now electronic.

Cons:

  • More costly maintenance: However, the lack of moving parts also means that it can be much harder to diagnose and is more expensive to repair once a problem breeds than the mechanical ignition systems.
  • More expensive parts: Distributor-less systems require double platinum spark plugs to facilitate its firing mechanism.

ПОДРОБНЕЕ

  • How To Gap Spark Plugs:Explained In Simple Steps
  • Tips To Choosing The Right Spark Plug Wires For Your Vehicle

4 Types Of Ignition System:#4 Coil-On-Plug Ignition

History

The coil-on-plug ignition system has all the advantageous electronic controls developed in the distributor-less systems. Also, like the distributor-less system, the coil-on-plug system places an ignition coil directly on the top of each spark plug to fire the spark plug directly, hence the name.

Because each spark plug now has its own dedicated coil that sits right on top for direct firing, high-voltage spark plug wires are completely removed. This increases the system’s efficiency, since spark plug wires introduce greater loss of amperage and voltage, as well as the possibility of contamination and cross-firing between cables if they become greasy or worn.

Another major improvement here is instead of two cylinders sharing a single coil, each coil now services just one cylinder. This means each coil can be “turned on” for twice as much longer to develop maximum magnetic field.

As a result, coil-on-plug ignition systems can generate between 40,000 and 50,000 volts, compared to up to 30,000 volts in distributor-less systems, and much hotter, stronger sparks to more efficiently burn the leaner air-fuel mixture, thereby maximizing engine’s efficiency.

Now there are no breaker points, distributors, condensers and spark plug wires. No moving parts means coil-on-plug ignition systems are less likely to break down, are more reliable and command less frequent repair.

On the downside, it should be noted that the lack of moving parts can make it more difficult to diagnose and more expensive to repair than a traditional system once there is indeed a problem, but as said, repairs are less frequent.

It should also be noted that the ignition coils are now sitting on top of the spark plugs, thus more exposed to damage by degreasers and water during under-hood engine cleaning, so be sure each is wrapped in plastic for protection before any cleaning begins.

How Coil-On-Plug Ignition Works

The most sophisticated of all ignitions systems,  this system controls spark timing using the Engine Control Unit, based on input from various sensors, to achieve the optimal precision, higher voltage, and stronger, hotter spark.

Similar to the distributor-less systems, coil-on-plug systems use engine sensors to know the shafts’ position. Based on this information, the Engine Control Unit triggers the appropriate ignition coil, which directly fires the associated spark plugs in the associated cylinder in the firing order.

Coil-On-Plug Ignition Summary

Pros:

  • Engine efficiency: Can generate consistent, high voltage and hotter, stronger spark that can efficiently burn the leaner air-fuel mixture in newer vehicles.
  • Precise spark timing: This allows for optimal engine efficiency and lower emissions.
  • Less frequent repairs: thanks to the lack of moving parts as spark plug wires are now removed.

Cons:

  • Repairs :No moving parts means difficult troubleshooting and more expensive repairs.

Ignition systems will continue to improve with features that today are unimaginable as technology advancements lead to continued improvements. Even as they do, all the four types of ignition system are still easy to maintain and repair, and well-suited for the vehicles of their own era.

To learn more about important components in your precious vehicle and how they work, dive into our comprehensive maintenance tips articles.


Дифференциалы:разные типы и принцип их работы | Автомеханика 101

Автомобили с автоматическим управлением:как они работают и работают ли они на самом деле?

Как работает система зажигания

Что такое подрулевые переключатели и как они работают?

Что такое барабанные тормоза и как они работают